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Abstract We investigate the impact of an uncertain number of false individual null
hypotheses on commonly used p value combination methods. Under such uncertainty,
these methods perform quite differently and often yield conflicting results. Conse-
quently, we develop a combination of “combinations of p values” (CCP) test aimed at
maintaining good power properties across such uncertainty. The CCP test is based on
a simple union–intersection principle that exploits the weak correspondence between
two underlying p value combination methods. Monte Carlo simulations show that the
CCP test controls size and closely tracks the power of the best individual methods.
We empirically apply the CCP test to explore the stationarity in real exchange rates
and the information rigidity in inflation and output growth forecasts.
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1 Introduction

P value combinations from a set of hypothesis tests are a common tool in meta-
analysis. The combinations resolve data and methodological problems: Full datasets
may not be available in many published studies, and individual methodologies are too
dissimilar for the underlying data to be combined. Given n individual hypotheses H0i ,
i = 1, 2, . . . , n, consider a test for the joint null hypothesis, H0 = ⋂n

i=1 H0i . H0 is true
if all the individual null hypotheses are true, but false if at least one of its components
is false. Many attempts have been made to compare the size and power of different
combinationmethods; see, for example,Westberg (1985), Neuhäuser (2003), Loughin
(2004), Sheng and Yang (2013a), and Hanck (2013). A key result of this literature is
that no uniformly most powerful test exists. Some tests, such as Tippett’s and Simes’
methods, are powerful when there are very few false individual null hypotheses. In
contrast, other tests, such as Fisher’s and Stouffer’s methods, are powerful when there
are many false individual null hypotheses. Since the number of false individual null
hypotheses is a priori unknown in practice, researchers have difficulty selecting the
optimal method to use. This problem is most severe when results from differing p
value combination methods conflict. In response, Loughin (2004, p. 484) suggested
that “Meta-combinations, or combinations of combinations, could be considered rather
than relying on a single function for all purposes.” We follow Loughin’s suggestion
by proposing a combination of “combinations of p values” (CCP) test that maintains
good power properties across an uncertain number of false individual hypotheses.

The CCP test is based on a simple union–intersection principle, originally pro-
posed by Roy (1953) as a heuristic method to test an intersection of some component
hypotheses. The union–intersection method allows us to bound the probability of the
union of a finite set of p value combination methods, without knowing their depen-
dence structure. Recent studies have applied a similar approach to other statistical
problems, but the application to combinations of p values is novel.1 More specifically,
the CCP test rejects the joint null hypothesis at the given significance level α when at
least one of the two p value combination methods yields a rejection at the designed
individual level γ . The value of γ is selected such that the CCP test (i) controls the
overall size at α and (ii) has good power, robust to the uncertain number of false indi-
vidual null hypotheses. Monte Carlo simulations show that the power of the CCP test
closely tracks that of the best individual method, irrespective of the number of false
individual null hypotheses.

We demonstrate the usefulness of the CCP test in two applications. In the first
empirical study, we investigate whether real exchange rates are stationary among a
group of OECD countries. Our results from the CCP test suggest that the underlying
source of non-stationarity in the observed real exchange rates is likely the common fac-
tor. This source of non-stationarity explains why evidence against purchasing power

1 Harvey et al. (2009) used the union–intersection method to combine two unit root tests, and their combi-
nation approach comes close to exploiting the available information efficiently as shown by Müller (2009).
Dumitru and Urga (2012) used the similar strategy across nine procedures and across sampling frequencies
to minimize spurious jump detection in financial assets. Bayer and Hanck (2013) applied a similar method
to combine non-cointegration tests.
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parity tends to accumulate. In the second empirical application, we assess which
forms of information constraints are most relevant to the expectation formation pro-
cess of professional forecasters. While individual p value combination methods often
give conflicting results, the CCP test clearly indicates the presence of substantial het-
erogeneity in estimated levels of information rigidity. This heterogeneity is across
forecasting horizons and countries and in line with the noisy information model à la
Sims (2003).

The rest of the paper is organized as follows: Sect. 2 develops theCCP test. Section 3
uses Monte Carlo simulations to explore the power of the test. Section 4 illustrates the
use of the test in two empirical examples, and Sect. 5 concludes. The online appendix
provides additional simulation results.

2 The combination of “combinations of p values” test

Let pi be the p value for testing an individual hypothesis H0i , i = 1, 2, . . . , n. We
consider the problem of testing the joint null hypothesis H0 = ⋂n

i=1 H0i when the
underlying p values are independent. We reject H0 at an overall significance level α if
at least one of H0i , i = 1, 2, . . . , n, is false. Various methods have been proposed in
the literature to combine p values. Broadly speaking, these methods can be classified
either as quantile combination methods or as ordered statistic methods.

The quantile combination methods transform the p values into distributional quan-
tiles. Twowell-known examples include Fisher’s (1932) method, t = −2

∑n
i=1 ln(pi )∼ χ2

2n , and Stouffer’s method, attributed to Stouffer et al. (1949), defined as z =
1√
n

∑n
i=1 �−1(pi ) ∼ N (0, 1), where �(·) is the standard normal cumulative distri-

bution function (c.d.f.).2

Let p(i) be the ordered p values such that p(i) ≤ p(i+1). The ordered statis-
tic methods take advantage of the fact that, under H0, p(1) ≤ p(2) ≤ · · · ≤ p(n)

are ordered statistics from a uniform distribution from zero to one. The underlying
assumptions are that under H0, these statistics follow a continuous distribution that
is free of nuisance parameters. The typical methods include Tippett’s (1931) method:
pmin = mini=1,...,n{pi }, and Simes’ (1986) method: pmin = mini=1,...,n{np(i)/ i},
where for both methods H0 is rejected if pmin ≤ α.3

Choosing an optimal method ex ante is complicated because H0 may be false in
numerous ways. As shown by the recent simulation studies in Neuhäuser (2003),
Loughin (2004), Sheng and Yang (2013a), and Hanck (2013), Tippett’s and Simes’
methods are powerful when the total evidence against H0 is concentrated in very few of
the combined p values. However, Fisher’s and Stouffer’s methods perform well when
evidence against H0 is broadly spread among the combined p values. Therefore,
the quantile combination methods and the order statistic methods frequently give
conflicting test decisions. We cannot generally expect the methods from different
groups to be sensitive to all possible alternatives. One of the contributions of this

2 These twomethodswere introduced to panel unit root literature independently byMaddala andWu (1999)
and Choi (2001). See Costantini and Lupi (2013) and Sheng and Yang (2013a) for recent applications.
3 Hanck (2013) advocated Simes’ method in testing panel unit roots.
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paper is to provide a robust test that is relatively powerful for all situations under the
alternative hypothesis.

To this end, we propose a further combination of a pair of p value combination
methods coming from different groups. Let Tj , j = 1, 2, denote the test statistics of
two p value combination methods (one from each group), c j the critical value, and γ j

the corresponding significance level. Then, we have

γ j = Pr(Tj ≥ c j |H0 is true), j = 1, 2.

Clearly, c j is uniquely and implicitly determined by γ j . We define the test statistic of
the CCP test as

Tc = 1{⋃2
j=1 Tj≥c j (γ j )}, (1)

where 1{A} is the indicator function of event A. To our knowledge, there is no optimal
criterion to choose individual levels. Because no single p value combination method
is among the best across the uncertain number of false individual null hypotheses,
we want to avoid the extreme cases when one method dominates. For example, if
γ1 ≈ 0 and γ2 ≈ α, then the CCP test almost reduces to the second p value combi-
nation method. In the absence of any prior information about the number of false null
hypotheses, we choose γ1 and γ2 to minimize the number of instances where both
methods reject H0, while still controlling the overall size at the level of α:

Pr(Tc = 1|H0 is true) = α. (2)

Theorem 2.1 shows that this minimization can be achieved at γ1 = γ2 = γ .

Theorem 2.1 Let Tj , j = 1, 2, denote the test statistics of two p value combination
methods, c j the critical value, and γ j the corresponding significance level. In order to
minimize the number of instances where both tests reject H0, while still maintaining
the size α, we select γ1 = γ2.

Proof It is sufficient to solve for γ1, since γ2 can be determined by equation (2). In
order for the CCP test to have good power properties across the uncertain number of
false individual null hypotheses, we minimize the probability that both methods reject
H0:

minγ1∈(0,1)
Pr

(
T1 ≥ c1(γ1)

⋂
T2 ≥ c2(γ2)

)

min{Pr(T1 ≥ c1(γ1)),Pr(T2 ≥ c2(γ2))} , (3)

subject to equation(2). In (3), the numerator can be expressed as

Pr
(
T1 ≥ c1(γ1)

⋂
T2 ≥ c2(γ2)

)
= Pr(T1 ≥ c1(γ1)) + Pr(T2 ≥ c2(γ2))

−Pr

⎛

⎝
2⋃

j=1

Tj ≥ c j (γ j )

⎞

⎠

= Pr(T1 ≥ c1(γ1)) + Pr(T2 ≥ c2(γ2)) − α.
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Without loss of generality, assume Pr(T1 ≥ c1(γ1)) ≤ Pr(T2 ≥ c2(γ2)), then (3)
becomes

minγ1∈(0,1)1 + Pr(T2 ≥ c2(γ2)) − α

Pr(T1 ≥ c1(γ1))
. (4)

Taking the derivative with respect to Pr(T1 ≥ c1(γ1)) yields

∂Pr(T2≥c2(γ2))
∂Pr(T1≥c1(γ1))

Pr(T1 ≥ c1(γ1)) − [Pr(T2 ≥ c2(γ2)) − α]
(Pr(T1 ≥ c1(γ1)))2

. (5)

If the minimization problem in (4) has an interior solution, that is, Pr(T1 ≥ c1(γ1)) <

Pr(T2 ≥ c2(γ2)), then (5) equals zero, which implies that ∂Pr(T2≥c2(γ2))
∂Pr(T1≥c1(γ1))

< 0. However,

this inequality will eventually lead to Pr(T1 ≥ c1(γ1)) > Pr(T2 ≥ c2(γ2)), which
contradicts the assumption Pr(T1 ≥ c1(γ1)) ≤ Pr(T2 ≥ c2(γ2)). Hence, the minimum
in (4) is obtained along the boundary by taking Pr(T1 ≥ c1(γ1)) = Pr(T2 ≥ c2(γ2)),
that is, γ1 = γ2.

Remark 2.1 In Theorem 2.1, we show that γ1 = γ2 can be achieved byminimizing the
probability that both p value combination methods reject H0. Note that the condition
γ1 = γ2 is similar toDufour andTorres (1998) andBayer andHanck (2013)where they
choose the weights to ensure the same null rejection probabilities for both methods.

Remark 2.2 By taking γ1 = γ2 = γ , the CCP test can be equivalently stated as: H0 is
rejected at the overall significance levelα ifmin(� j ) ≤ γ for j = 1, 2,where� j is the
p value from the test statistic Tj in testing the joint null hypothesis H0. This alternative
form proves particularly useful when demonstrating admissibility properties for the
CCP test. According to Birnbaum (1954), every monotone combined test procedure
is admissible in the class of all combined test procedures. A combined test procedure
Y is monotone if Y is a non-decreasing function, that is, if p∗

i ≤ pi , i = 1, 2, . . . , n,
then Y (p∗

1, p
∗
2, . . . , p

∗
n) ≤ Y (p1, p2, . . . , pn). In our case, Y = min(� j ), j = 1, 2,

is clearly non-decreasing and thus the CCP test is admissible.

Remark 2.3 Although the CCP test is similar to Bonferroni procedure, these two
methods are different. According to Bonferroni procedure, H0 is rejected at the overall
significance level α if min(� j ) ≤ α/2 for j = 1, 2. Bonferroni procedure controls
the family-wise error rate but at the cost of low false null hypothesis detection, because
� j is compared to the level α/2, which is smaller than γ as in the CCP test—as shown
in equation (6). Thus, the CCP test has a higher ability to detect false null hypothesis
and is more powerful than Bonferroni procedure.4

The CCP test is fully specified after γ is determined. For convenience, let

g(γ ; n) = Pr(Tc = 1|H0 is true),

4 See Lehmann and Romano (2005, p.350) for further discussions on the power of Bonferroni procedure.
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denote the size of the CCP test. Given the overall significance level α, γ is determined
such that g(γ ; n) = α. In most cases, g(γ ; n) does not have a closed-form formula
because the underlying multiple testing methods are not independent, with possibly a
complex dependence structure. To address such problems, we use Monte Carlo simu-
lation to generate g(γ ; n) for 0 < γ < 0.2. Let K be a positive integer and simulate K
points for g(γ ; n). Define the step size to be h = 0.2

K andγk = hk, for k = 1, 2, . . . , K .

Each yk = g(γk; n) is generated by the Monte Carlo simulation as follows.

1. Generate n i.i.d. uniformly random numbers p1, p2, . . . pn on [0, 1] as a set of p
values.

2. Compute the value of test statistics Tc,k when the significance level for the indi-
vidual p value combination method is γk .

3. Repeat the steps above M times and get a random sample T 1
c,k, T

2
c,k, . . . , T

M
c,k .

Then, yk = g(γk; n) ≈ Tc,k = 1

M

M∑

m=1

Tm
c,k .

Since we do not expect to see many oscillations over a small interval, we use a
second-order polynomial to fit the simulated data5

yk = an0 + an1γk + an2 (γk)
2, k = 1, 2, . . . , K .

We estimate the coefficients in a regression of yk on (1, γk, γ 2
k ) and then obtain γ by

solving

g(γ ; n) ≈ an0 + an1γ + an2γ
2 = α.

Table 1 provides the values of γ for combining two of the four methods considered in
this paper, for α = 0.01, 0.05, 0.10 and n = 2, 5, 10, 20, 40, 80, 160, 500.6

The values of γ also provide information about the correspondence between two p
value combination methods. To illustrate this, we define the correspondence between
two combination methods under H0 as

ρ =
Pr

(⋂2
j=1 Tj ≥ c j (γ j )

∣
∣
∣H0 is true

)

√

Pr
(
T1 ≥ c1(γ1)

∣
∣
∣H0 is true

)
Pr

(
T2 ≥ c2(γ2)

∣
∣
∣H0 is true

) = 2 − α

γ
∈ [0, 1],

(6)

where the last equality holds as we set γ j = γ for j = 1, 2.

5 In cases where g(γ ; n) has a closed-form formula, e.g., combining Tippett’s and Simes’ methods, we
find that a second-order polynomial is sufficient in approximating the function g(γ ; n). We also conducted
the simulation study by combining Tippett’s and Simes’ methods. The simulated values of γ are virtually
the same as the ones obtained analytically by solving the equation g(γ ; n), implying that the Monte Carlo
simulation methods are reliable.
6 We experimented with different values of K and step size h. Our results show that the values of γ remain
almost the same across different values of K = 10, 20, and 40. For the detailed results, see the online
appendix. In our simulation, we used K = 20, h = 0.01, and M = 10, 000.
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Table 1 Estimation of individual significance level γ

α n = 2 5 10 20 40 80 160 500

A 0.01 0.0071 0.0060 0.0055 0.0053 0.0048 0.0046 0.0046 0.0047

0.05 0.0385 0.0330 0.0304 0.0287 0.0270 0.0261 0.0257 0.0254

0.10 0.0817 0.0708 0.0648 0.0606 0.0573 0.0551 0.0538 0.0527

B 0.01 0.0071 0.0059 0.0055 0.0053 0.0048 0.0046 0.0046 0.0047

0.05 0.0383 0.0328 0.0303 0.0286 0.0270 0.0260 0.0256 0.0254

0.10 0.0808 0.0697 0.0641 0.0601 0.0570 0.0549 0.0537 0.0526

C 0.01 0.0058 0.0052 0.0051 0.0051 0.0047 0.0047 0.0047 0.0048

0.05 0.0325 0.0286 0.0273 0.0265 0.0257 0.0253 0.0252 0.0252

0.10 0.0696 0.0605 0.0570 0.0550 0.0534 0.0525 0.0520 0.0517

D 0.01 0.0058 0.0052 0.0051 0.0051 0.0047 0.0047 0.0047 0.0048

0.05 0.0324 0.0285 0.0272 0.0265 0.0256 0.0252 0.0252 0.0252

0.10 0.0690 0.0601 0.0568 0.0549 0.0533 0.0524 0.0520 0.0517

A Combination of Fisher’s and Simes’ methods
B Combination of Fisher’s and Tippett’s methods
C Combination of Stouffer’s and Simes’ methods
D Combination of Stouffer’s and Tippett’s methods

Remark 2.4 According to equation (6), given the overall significance level α, ρ is
uniquely determined by γ , and vice versa. We consider three different cases regarding
the correspondence between two p value combination methods under H0.

Case (i): If γ = α
2 , then ρ = 0 and the two p value combination methods propose

opposite decisions;
Case (ii): If γ = α, then ρ = 1 and the two p value combination methods propose

the same decisions;
Case (iii): If α

2 < γ < α, then 0 < ρ < 1. The correspondence between the two
methods increases as ρ increases.

The findings reported inTable 1 imply that the correspondence between themethods
from different groups is relatively low. More specifically, the correspondence between
Fisher’s and Simes’ (or Tippett’s) methods ranges from 0.10 to 0.46, and between
Stouffer’s and Simes’ (or Tippett’s) methods, from 0.03 to 0.25 for n ≥ 10. These
findings, in turn, justify our practice of combining a pair of methods from different
groups.7

At the end of this section, we need to point out that there may exist situations where
we assign different weights to different p value combination methods. Although the
number of false individual hypotheses is a priori unknown in practice, the set of p
values will provide some information. To fix ideas, let τ be the percentage of the p
values that are less than a given threshold, ε. Recall that when τ is larger, Tippett’s and

7 In separate simulation studies not shown here, we combined the two methods from the same group.
We find that Tippett’s and Simes’ methods are almost perfectly corresponded, and Fisher’s and Stouffer’s
methods are highly corresponded. To save space, these results are not reported here. They are available
upon request.
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Simes’ methods become less powerful but Fisher’s and Stouffer’s methods become
more powerful. Thus, it is possible to construct the weighted CCP test with the indi-
vidual significance level γ1 (for Tippett’s or Simes’ method) and γ2 (for Fisher’s or
Stouffer’s method) determined by equations (2) and (7):

γ1

γ2
= 1 − τ

τ
. (7)

In our simulations, we take different threshold values ε = 0.1, 0.2, 0.4, 0.6, 0.8, or
0.9 and τ = k · 10%, k = 0, 1, · · · , 10.

3 Power of the CCP test

When the joint null hypothesis H0 is false, whether one, few, or almost all indi-
vidual null hypotheses H0i , i = 1, 2, . . . , n are false is a priori unknown. Let
L ∈ {1, 2, . . . , n} denote the number of false individual hypotheses. The goal of
this section is to examine how changes in L affect the power of the CCP test via
Monte Carlo simulations.

3.1 A simulation study using exact p values

Amodel is needed to simulate the p value of each individual hypothesis, H0i . Accord-
ing to Loughin (2004), the p value (P) is a random variable with the following
properties: (i) Under the individual null hypothesis H0i , P ∼ U (0, 1); (ii) under
the alternative hypothesis, denoted by HAi , the density of P is non-increasing; and
(iii) one or more parameters that can stochastically order the densities must be defin-
able. The last property mimics the effects of increasing sample sizes under HAi , with
H0i as a limiting case. Although there are many potential density functions for P , we
follow Loughin (2004) in using the beta function because of its non-increasing density
and easiness to work with computationally.

The beta density function is fβ(p) = β(a, b)pa−1(1− p)b−1,where β(a, b) is the
beta coefficient. When a = 1 and b ≥ 1, we have the density fβ(p) = b(1 − p)b−1

and the c.d.f. Fβ(p) = 1 − (1 − p)b that satisfy all of the properties above. Let S be
the probability integral transformation of P , that is, S = Fβ(P) = 1 − (1 − P)b ∼
U (0, 1). We simulate p values using P = F−1

β (S) = 1 − (1 − S)1/b. When b = 1,
we have p values generated under the null hypothesis, where P ∼ U (0, 1). When
b > 1, we generate p values under the alternative hypothesis, where b measures the
strength of evidence against the individual null hypothesis. Without loss of generality,
let b1 = · · · = bL > 1 and bL+1 = · · · = bn = 1. In detail, the simulation follows:

1. Generate n i.i.d. uniformly distributed random numbers, s1, s2, . . . sn on [0, 1].
2. Convert si to pi by

pi = F−1
β (si ) = 1 − (1 − si )

1/bi , i = 1, 2, . . . , n.

3. Apply the CCP test to the p values generated in Step 2.
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Fig. 1 Power of the test when combining Fisher’s and Simes’ methods

4. Repeat Steps 1 − 3 M times. Count the number of times, denoted by N , that H0
is rejected. The power of the CCP test is N/M .

Figures 1, 2, 3, 4 plot the power of the CCP test and the underlying two p value
combination methods, when the number of false individual null hypotheses, L , takes
the values of 1, n/3, 2n/3, and n, respectively. The results are obtained based on
M = 10, 000 simulations with the nominal size set at 5%. Three points are worth
noting.

Consistent with the literature, there is no dominant test for various levels of L .
When there is only one false individual null hypothesis (i.e., L = 1) and the evidence
against the individual null is very strong (i.e., b = 400), the optimal method is Simes’
or Tippett’s. In contrast, the optimal method is Fisher’s or Stouffer’s when many
individual null hypotheses are false (i.e., L = n/3, 2n/3, and n) and the overall
amount of evidence against the individual null is moderate (i.e., b = 3, 2.5, and 1.5).
However, we are uncertain whether the number of false hypotheses is small or large in
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Fig. 2 Power of the test when combining Fisher’s and Tippett’s methods

practice. Therefore, a risk-averse strategy is to further combine Simes’ (or Tippett’s)
method with Fisher’s (or Stouffer’s) method.

Second, even though the CCP test is not the most powerful method in all cases, it
performs very well, closely tracking the best method. The CCP test utilizes the weak
correspondence between the two underlying methods, thereby deriving its power from
Simes’ or Tippett’s method when L = 1 and from Fisher’s or Stouffer’s method when
L takes other values. The simulation results confirm our expectation that the CCP
test insures against selecting an inferior individual method without sacrificing much
power.8

8 In separate simulation studies, we also combined the two methods within the same group. We find that
the power of the individual methods is virtually indistinguishable from that of the CCP test. Thus, the
gains from combining two highly correlated methods are very small. For this reason, we do not recommend
combining the two methods coming from the same group.
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Fig. 3 Power of the test when combining Stouffer’s and Simes’ methods

Third, the weighted test outperforms the CCP test for selected parameter values,
consistent with our argument that there are power gains by employing additional
information. However, the power gains depend on the number of false individual
hypotheses (L), the strength of evidence against the individual hypotheses (b), and the
threshold (ε). Indeed, in situations where the weights are inappropriately chosen, the
weighted test is less powerful than the CCP test, as shown by the figures in the online
appendix. In light of themarginal power improvement to such aweightingmechanism,
we generally recommend the use of the CCP test and restrict our discussion on the
equally weighted CCP test below.

3.2 Power of panel unit root tests

We assess the ability of our measure to supplement a common empirical test, the panel
unit root test. More specifically, we explore the power of panel unit root test using the
following data generating process:

123



340 L. Cheng, X. S. Sheng

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(n)

po
w

er
L=1, b=400

Stouffer

weighted CCP

Tippett

CCP

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(n)
po

w
er

L=n/3, b=3

Stouffer

weighted CCP

Tippett

CCP

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(n)

po
w

er

L=2n/3, b=2.5

Stouffer

weighted CCP

Tippett

CCP

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log(n)

po
w

er
L=n, b=1.5

Stouffer

weighted CCP

Tippett

CCP

Fig. 4 Power of the test when combining Stouffer’s and Tippett’s methods

yit = μi + γi ft + eit , (8)

ft = φ ft−1 + ηt , (9)

eit = ρi ei,t−1 + wi t , (10)

for i = 1, . . . , N , t = 1, . . . , T . The individual fixed effect μi and the factor loading
γi in equation (8) are drawn independently of each other as μi ∼ i.i.d. U [0, 0.2] and
γi ∼ i.i.d. U [−1, 3]. The error terms ηt in equation (9) and wi t in equation (10) are
simply drawn as ηt ∼ i.i.d. N (0, 1) and wi t ∼ i.i.d. N (0, 1). The strong dependence
across panel units is driven by the common factor ft .

We explore size of the tests under H0 : φ = 1 and ρi = 1 for all i . Note that the
null hypothesis allows for non-stationarity in both common factor and idiosyncratic
errors. We explore power of the tests when φ = 0.5 and
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ρi =
{
1 for xi ≥ 1
xi for 0 < xi < 1,

where f (x) = k
λ
( x
λ
)k−1e−( x

λ
)k for x > 0 and 0 otherwise. The parameters k and λ of

the Weibull distribution are selected such that

P(xi ≥ 1) = P(ρi = 1) = 1 − L ,

E(ρi ) = 1 × (1 − δ) +
∫ 1

0
x f (x)dx = 1 − b,

where L ∈ (0, 1) and b ∈ (0, 1) are pre-specified constants. L indicates the fraction of
stationary series (i.e., false individual null) in the panel, and b captures the deviation
of the autoregressive parameters from the unit root null on average. Taken together,
L measures the relative amount of evidence against H0 or “patterns,” and b mea-
sures the overall amount of evidence against H0 or “strength.” Thus, our Monte Carlo
designs allow us to study the impact of changes in either “patterns” or “strength”
on power of the tests. The tests are one-sided with the nominal size set at 5% and
conducted for all combinations of N ∈ {20, 40} and T ∈ {50, 100} using M=10,000
simulations. To control for cross section dependence, we use Bai and Ng’s (2004)
panel analysis of non-stationarity in idiosyncratic and common components (PANIC)
approach to remove the common factors from the data. As a result, the defactored
residuals are independent across panel units, which then allows us to construct valid
pooled test statistics. We conduct the augmented Dickey–Fuller (ADF) test on the
defactored residuals and obtain p values of the ADF test using response surface
regressions.

In the presence of strong cross section dependence, the CCP test yields good empir-
ical size. For all four combinations of individual methods considered in this paper, the
size of the CCP test ranges from 0.042 to 0.054. The power of the CCP test increases
when T increases and when N increases as long as L is fixed, which justifies the use
of panel data in unit root tests. Figures 5 and 6 plot the power of the CCP test when
combining Stouffer’s and Simes’ methods with b = 0.10 and 0.06, respectively.9

Consistent with the results from previous simulations, the CCP test closely tracks the
most powerful method, deriving its power from Simes’ method when L < 0.30 and
from Stouffer’s method when L > 0.30. The CCP test even outperforms the best sin-
gle method when the constituent methods have very similar power. Intuitively, this is
because each constituent method rejects the null hypothesis only marginally, but taken
together, the CCP test provides sufficient evidence to reject H0. The CCP test takes
advantage of the imperfect correlation of the underlying methods. Finally, the power
increases as the overall amount of evidence against H0 accumulates with b increasing
from 0.06 in Fig. 5 to 0.10 in Fig. 6.

9 The power of the CCP test when combining other methods, that is, Fisher’s and Simes’, Fishers’ and
Tippett’s, and Stouffer’s and Tippett’s, is qualitatively similar to that of combining Stouffer’s and Simes’
and is thus not reported here for the sake of brevity.
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Fig. 5 Power of panel unit root test with a small amount of evidence against H0

4 Empirical examples

We demonstrate the usefulness of the CCP test in two applications: (i) testing the
stationarity in real exchange rates and (ii) testing heterogeneity in information rigidity
in macro-forecasts.

4.1 Testing the purchasing power parity hypothesis

Purchasing power parity (PPP) is a key assumption in many theoretical models of
international economics. A common way to test for evidence of long-run PPP is to test
for real exchange rate stationarity. However, empirical evidence of PPP for the floating
regime period (1973–1998) is mixed.While several authors, such as Lopez (2008) and
Costantini and Lupi (2013), found supporting evidence, others (Choi and Chue 2007;
Pesaran 2007) questioned the validity of PPP for this period. In this section, we use
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Fig. 6 Power of panel unit root test with a large amount of evidence against H0

the CCP test to investigate whether real exchange rates are stationary among a group
of OECD countries.

The log real exchange rate between country i and the USA is given by

qit = sit + pus,t − pit , i = 1, . . . , n; t = 1, . . . , T, (11)

where sit is the logarithm of the nominal exchange rate of the i th country’s currency
in terms of US dollars; pus,t and pit are the logarithm of consumer price indices in the
USA and country i , respectively. We use quarterly data from the first quarter of 1973
to the second quarter of 1998 for 23 OECD countries (n = 23, T = 102), as listed in
Table 2. All data are obtained from the IMF’s International Financial Statistics.

Although tests that combine the data generally provide superior power to tests that
combine p values, combining dependent data often leads to excessive size distortions.
By construction, real exchange rates are dependent because of the common numeraire.
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Table 2 Augmented
Dickey–Fuller test for
stationarity in real exchange
rates

Country Lag p value

Australia 0 0.585

Austria 6 0.760

Belgium 0 0.365

Canada 0 0.905

Denmark 0 0.080

Finland 0 0.265

France 0 0.405

Germany 0 0.760

Greece 2 0.100

Iceland 5 0.250

Ireland 1 0.185

Italy 0 0.115

Japan 0 0.525

Korea 0 0.035

Luxembourg 0 0.650

Mexico 0 0.035

Netherlands 2 0.075

Norway 0 0.010

Portugal 0 0.205

Sweden 0 0.430

Switzerland 0 0.520

Turkey 0 0.435

UK 1 0.120

Therefore, when assessing PPP, tests that combine p values are preferred over those
that combine the data. The literature verifies our decision. O’Connell (1998) showed
that when the independence assumption is violated, panel unit root tests by directly
pooling the data will over-reject the null hypothesis. As also pointed out by Maddala
and Wu (1999) and Choi (2001), combining p values has the added advantages of
allowing different specifications for each panel unit and for the null hypothesis. See
Baltagi (2008, chapter 12) for a recent review on non-stationary panels and p values.

The PANIC approach decomposes the real exchange rate qit in the following way:

qit = ci + λ′
i Ft + eit , (12)

where Ft is an r × 1 vector of common factors that induce correlation across panel
units, λi is an r × 1 vector of factor loadings, and eit is an idiosyncratic error. For real
exchange rates to be stationary, Ft and eit must be stationary as well. Non-stationarity,
on the other hand, could arise because of a unit root in any of the r factors or in eit .

We begin with estimating the factors and the loadings using principal component
analysis. Bai and Ng (2004) proposed an information-based procedure, IC1, that can
consistently estimate the number of factors r . The IC1 selects one factor in our sample.
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We proceed with estimation assuming there is one common factor. The ADF test on
the common factor yields −1.793 with a p value of 0.385. We cannot reject the null
hypothesis that the common component is non-stationary.

We consequently assume that Ft is non-stationary and test the idiosyncratic errors.
To conduct the unit root test, we replace eit in equation (12) by êi t , the accumulated
principal components estimator of �eit , and then run the following regression

�êi t = φi êi,t−1 +
ki∑

j=1

ϕi j�êi,t− j + uit . (13)

We conduct the ADF test, which is the individual t-test for testing φi = 0 in equation
(13). Table 2 shows the estimation results. The null hypothesis that the idiosyncratic
components are non-stationary cannot be rejected at α = 5% according to Simes’
and Tippett’s methods. The smallest p value exceeds the threshold level of either
method: p(1) = 0.01 > α

n = 0.002 for Simes’ method and p(1) = 0.01 > 1 − (1 −
α)1/n = 0.002 for Tippett’s method. However, the null hypothesis is strongly rejected
by Fisher’s and Stouffer’s methods with p values of 0.0104 and 0.0046, respectively.
The different methods yield conflicting results or “mixed signals.” Now turning to the
CCP test, we first consider the combination of Simes’ and Fisher’s methods. If either
of the methods individually yields a rejection at the significance level γ , then we reject
the null hypothesis that the idiosyncratic components are non-stationary. According
to Table 1, we use γ = 0.0287. Since the p value of Fisher’s method equals 0.0104,
which is less than the significance level 0.0287, Fisher’s method and thus the CCP test
reject the null hypothesis.When combining other pairs ofmethods that give conflicting
results, e.g., Simes and Stouffer, Tippett and Fisher, Tippett and Stouffer, we reach
the same rejection decision. In summary, the results from the CCP tests unanimously
reject the null hypothesis that the idiosyncratic components are non-stationary.

Taken as a whole, evidence from testing the common component suggests the
presence of one non-stationary factor. However, the results from the CCP test strongly
reject the non-stationarity in the idiosyncratic components. Therefore, our tests suggest
that the underlying source of non-stationarity in the observed real exchange rates
is likely the common component. Understanding the source of this non-stationarity
provides insight into why evidence against PPP tends to accumulate.

4.2 Testing information rigidity in macro-forecasts

Imperfect information models have recently regained interest in the macroeconomics
literature: See Coibion and Gorodnichenko (2012), and Andrade and Le Bihan (2013),
among others. In this section, we focus on two types of rational expectation models
with information rigidities: the sticky informationmodel à laMankiw and Reis (2002)
and the noisy information model à la Sims (2003). The goal of this section is to assess
these two models by comparing the estimated degrees of information rigidity across
forecasting horizons and countries.

In the sticky information model, due to limited resources and the cost of updating
information sets, forecasters update their information infrequently. In contrast, in the
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noisy information model, forecasters continuously update their information sets, but
form expectations via Kalman filter because they cannot fully observe the true state.
Despite their differences, Coibion and Gorodnichenko (2015) show that both mod-
els predict the same relationship between the average forecast error and the average
forecast revision as specified in the following regression:

xt − Fth = α + βRth + et , (14)

where xt is the actual inflation (or output growth), Fth is the h-quarter ahead mean
forecast, Rth = Fth − Ft,h+1 is the revision in mean forecasts, and et is the full-
information rational expectations error and thus uncorrelated with information dated
t or earlier. In equation (14), the coefficient on forecast revisions, β, maps one to one
into the underlying degree of information rigidity. In the sticky information model,
β = λ

1−λ
, where λ is the proportion of forecasters not updating information at each

period. Sinceλ is defined as afixedparameter commonacross countries and forecasting
horizons, a testable implication of the canonical sticky information model is that the
estimated degree of information rigidity is invariant across countries and forecasting
horizons. In the noisy information model, β = 1−G

G , where G is the Kalman gain,
measuring the weight given to new information. Since the Kalman gain depends on
the persistence of the target variable and the signal-to-noise ratio of information for
each country at each forecasting horizon, the noisy information model implies that
the estimated degree of information rigidity may vary across countries and forecasting
horizons. Hence, we test the sticky vs. noisy information model with the following
hypotheses

Ha
0 : Information rigidity is the same across forecast horizons.

Hb
0 : Information rigidity is the same across countries.

Evidence for both Ha
0 and Hb

0 would favor the sticky information model. On the other
hand, rejection of either Ha

0 or Hb
0 would support the noisy information model.

To estimate information rigidities,we use professional forecasts of inflation and out-
put growth fromConsensus Forecasts. Relative to other economic agents, professional
forecasters have access to a wider range of news and have a comparative advantage
in processing news. For these reasons, the extent of information rigidity among pro-
fessional forecasters can be seen as a lower bound for other agents’ inattention to
news. Our dataset covers 22 target years (1990–2012), 7 horizons from one-quarter to
seven-quarter ahead, and 7 major industrialized countries: Canada, France, Germany,
Italy, Japan, the UK and the USA.

Tables 3 and 4 show the results of testing the homogeneity of information rigidities
across forecasting horizons and countries, respectively, at the 5% significance level.
When all individual p value combination methods do or do not reject, the CCP test
does so too. However, agreeing methods are consistent only in 57–86% of cases. For
the remaining cases, the two individual methods give conflicting results. The mixed
signals arise either because the order statistic methods reject the null but the quan-
tile combination methods do not reject, or vice versa. Among those cases of mixed
signals from individual methods, the CCP test yields a clear decision: In 82% of the
mixed cases, the CCP test rejects the null hypotheses, and in the remaining cases, the
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Table 3 Test of the equality in information rigidity across forecasting horizons

Percentage of cases in which two methods In case of disagreement

Agree Disagree Percentage in which CCP test

Reject Not reject Reject Not reject

(a) Inflation forecast

A (%) 71.4 14.3 14.3 100.0 0.0

B (%) 71.4 14.3 14.3 100.0 0.0

C (%) 71.4 14.3 14.3 100.0 0.0

D (%) 71.4 14.3 14.3 100.0 0.0

(b) GDP forecast

A (%) 85.7 0.0 14.3 100.0 0.0

B (%) 85.7 0.0 14.3 100.0 0.0

C (%) 85.7 0.0 14.3 100.0 0.0

D (%) 85.7 0.0 14.3 100.0 0.0

A Combination of Fisher’s and Simes’ methods
B Combination of Fisher’s and Tippett’s methods
C Combination of Stouffer’s and Simes’ methods
D Combination of Stouffer’s and Tippett’s methods

CCP test does not reject.10 Overall, the null hypothesis that the estimated degrees of
information rigidity are the same across horizons is rejected in about 86% of inflation
forecasts and 100% of GDP forecasts (Table 3). Specifically, we find that information
rigidities tend to increase with forecast horizons. At very long horizons, signals are
noisy and the target variable predictability is low, cf. Lahiri and Sheng (2008). The
null hypothesis that information rigidity is the same across countries is rejected in
about 71% of inflation forecasts and 86% of GDP forecasts (Table 4). The presence of
heterogeneity in estimated levels of information rigidity across forecasting horizons
and countries is in line with the noisy information model. However, this substantial
heterogeneity contrasts sharply with the canonical sticky information model, suggest-
ing that future work on models of sticky information should allow for differential
information updating rates across forecasting characteristics.

5 Concluding remarks

This papermakes two contributions to the literature onmeta-analysis. First, we address
the problem of substantially differing performance in commonly used p value combi-
nationmethods across an uncertain number of false individual hypotheses.We propose
a new procedure, the CCP test, that retains good power properties despite such uncer-
tainty. Based on a simple union–intersection principle, the proposed test uses the
weak correspondence between the two individual methods to extract the superior

10 The 82% is calculated as the ratio of the number of rejections of the null by the CCP test (18) over the
number of cases where two constituent methods give conflicting results (22).
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Table 4 Test of the equality in information rigidity across countries

Percentage of cases in which two methods In case of disagreement

Agree Disagree Percentage in which CCP test

Reject Not reject Reject Not reject

(a) Inflation forecast

A (%) 42.9 28.6 28.6 100.0 0.0

B (%) 42.9 28.6 28.6 100.0 0.0

C (%) 42.9 14.3 42.9 66.7 33.3

D (%) 42.9 14.3 42.9 66.7 33.3

(b) GDP forecast

A (%) 71.4 14.3 14.3 0.0 100.0

B (%) 71.4 14.3 14.3 0.0 100.0

C (%) 71.4 14.3 14.3 100.0 0.0

D (%) 71.4 14.3 14.3 100.0 0.0

A Combination of Fisher’s and Simes’ methods
B Combination of Fisher’s and Tippett’s methods
C Combination of Stouffer’s and Simes’ methods
D Combination of Stouffer’s and Tippett’s methods

power of the two. Our Monte Carlo simulations show that the power of the CCP test
closely tracks the best achievable power, while keeping the size close to the nominal
level.

Second, we present two empirical examples where the results from individual p
value combination methods contradict. In one example, we investigate whether real
exchange rates are stationary among a group of OECD countries. In another, we assess
which forms of information constraints are most relevant to the expectation formation
process of professional forecasters. While the purchasing power parity hypothesis
has been well studied in the literature, to our knowledge, this is the first work to
apply meta-analysis in testing the heterogeneity of information frictions across fore-
casting horizons and countries. As illustrated in both empirical examples, the CCP
test avoids arbitrarily choosing a method when the constituent methods give “mixed
signals.”

Since our test applies to any situation with multiple competing tests, the CCP test
has the potential to serve a wide variety of empirical applications. Examples include
testing for panel cointegration, jumps, and structural breaks-to name just a few. By
applying the CCP test to empirical studies, practitioners would take a significant step
toward robustly using all available information in hypothesis testing. Otherworthwhile
extensions include (i) comparing the CCP test to the resampling-based combined test
in Dufour et al. (2015) and (ii) comparing the weighted CCP test to the truncated
product method (TPM) proposed by Zaykin et al. (2002) and the adaptive TPM in
Sheng and Yang (2013b). We leave these for future research.
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